Part Number Hot Search : 
2BD50 GSOT0310 RM805 UTCM2100 TB0821A B25667 BCP71 MC68HC9
Product Description
Full Text Search
 

To Download MLX90316 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Rotary Position Sensor IC
MLX90316
Features and Benefits
Absolute Rotary Position Sensor IC Simple & Robust Magnetic Design TriaisTM Hall Technology Programmable Angular Range up to 360 Degrees Programmable Linear Transfer Characteristic Selectable Analog (Ratiometric), PWM, Serial Protocol 12 bit Angular Resolution 10 bit Angular Accuracy 40 bit ID Number Single Die - SO8 Package RoHS Compliant Dual Die (Full Redundant) - TSSOP16 Package RoHS Compliant
Applications
Absolute Rotary Position Sensor Pedal Position Sensor Throttle Position Sensor Ride Height Position Sensor Steering Wheel Position Sensor Motor-shaft Position Sensor Float-Level Sensor Non-Contacting Potentiometer
Ordering Information
Part No. MLX90316 MLX90316 MLX90316 MLX90316 MLX90316 Temperature Suffix S (- 20C to + 85C) E (- 40C to + 85C) K (- 40C to + 125C) E (- 40C to + 85C) K (- 40C to + 125C) Package Code DC [SOIC-8] DC [SOIC-8] DC [SOIC-8] GO [TSSOP-16] GO [TSSOP-16] Option code -
1. Functional Diagram
!
T ria is
'+
',
'
'*
" ! #$ %
&
( %
!)
Figure 1 - Block Diagram 3901090316 Rev. 001 Page 1 of 34 Data Sheet 4 October 05
Rotary Position Sensor IC 2. Description
MLX90316
The MLX90316 is a monolithic sensor IC featuring the TriaisTM Hall technology. Conventional planar Hall technology is only sensitive to the flux density applied orthogonally to the IC surface. The TriaisTM Hall sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an Integrated Magneto-Concentrator (IMC(R)) which is deposited on the CMOS die (as an additional back-end step). The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360 Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are frequently required for both automotive and industrial applications. In combination with the appropriate signal processing, the magnetic flux density of a small magnet (diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 2). The angular information is computed from both vectorial components of the flux density (i.e. BX and BY) MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between Analog, PWM and Serial Protocol.
Figure 2 - Typical application of MLX90316
3901090316 Rev. 001
Page 2 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC TABLE OF CONTENTS
FEATURES AND BENEFITS ....................................................................................................................... 1 APPLICATIONS............................................................................................................................................ 1 ORDERING INFORMATION......................................................................................................................... 1 1. 2. 3. 4. 5. 6. 7. 8. 9. FUNCTIONAL DIAGRAM...................................................................................................................... 1 DESCRIPTION....................................................................................................................................... 2 GLOSSARY OF TERMS - ABBREVIATIONS - ACRONYMS ............................................................ 5 PINOUT.................................................................................................................................................. 5 ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 6 DETAILED DESCRIPTION.................................................................................................................... 6 MLX90316 ELECTRICAL SPECIFICATION......................................................................................... 9 MLX90316 ISOLATION SPECIFICATION .......................................................................................... 10 MLX90316 TIMING SPECIFICATION ................................................................................................. 10
MLX90316
10. MLX90316 ACCURACY SPECIFICATION ......................................................................................... 11 11. MLX90316 MAGNETIC SPECIFICATION .......................................................................................... 12 12. MLX90316 CPU & MEMORY SPECIFICATION ................................................................................. 12 13. MLX90316 END-USER PROGRAMMABLE ITEMS ........................................................................... 13 14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 14 14.1. OUTPUT_MODE.........................................................................................................................................14 14.1.1. Analog Output Mode ............................................................................................................................14 14.1.2. PWM Output Mode...............................................................................................................................14 14.1.3. Serial Protocol Output Mode ...............................................................................................................14 14.2. OUTPUT TRANSFERT CHARACTERISTIC.....................................................................................................15 14.2.1. CLOCKWISE Parameter......................................................................................................................15 14.2.2. LNR Parameters ...................................................................................................................................15 14.2.3. CLAMPING Parameters ......................................................................................................................16 14.2.4. DEADZONE Parameter .......................................................................................................................16 14.2.5. FHYST Parameter ................................................................................................................................16 14.3. IDENTIFICATION ........................................................................................................................................16 14.4. SENSOR FRONT-END .................................................................................................................................17 14.4.1. HIGHSPEED Parameter......................................................................................................................17 14.4.2. FILTER Parameter...............................................................................................................................17 14.4.3. AUTO_RG, RGThresL, RGThresH Parameters...................................................................................17 14.5. DIAGNOSTIC..............................................................................................................................................18 14.5.1. EEHAMHOLE Parameter ....................................................................................................................18 14.5.2. RESONFAULT Parameter ...................................................................................................................18 14.5.3. DACTHRES Parameter........................................................................................................................18 14.5.4. FORCERA75 Parameter ......................................................................................................................18 3901090316 Rev. 001 Page 3 of 34 Data Sheet 4 October 05
Rotary Position Sensor IC
14.6. LOCK.........................................................................................................................................................18 14.6.1. MLXLOCK Parameter .........................................................................................................................18 14.6.2. LOCK Parameter .................................................................................................................................18 15. MLX90316 SELF DIAGNOSTIC.......................................................................................................... 19 16. SERIAL PROTOCOL........................................................................................................................... 21 16.1. INTRODUCTION .........................................................................................................................................21 16.2. SERIAL PROTOCOL MODE ...................................................................................................................21 16.3. MOSI (MASTER OUT SLAVE IN) ...............................................................................................................21 16.4. MISO (MASTER IN SLAVE OUT) ...............................................................................................................21 16.5. /SS (SLAVE SELECT) .................................................................................................................................21 16.6. MASTER START-UP ...................................................................................................................................21 16.7. SLAVE START-UP ......................................................................................................................................21 16.8. TIMING......................................................................................................................................................22 16.9. SLAVE RESET ............................................................................................................................................23 16.10. FRAME LAYER ..........................................................................................................................................23 16.10.1. Command Device Mechanism ..........................................................................................................23 16.10.2. Data Frame Structure ......................................................................................................................23 16.10.3. Timing ..............................................................................................................................................23 16.10.4. Data Structure ..................................................................................................................................24 16.10.5. Angle Calculation.............................................................................................................................24 16.10.6. Error Handling.................................................................................................................................24 17. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 25 17.1. 17.2. 17.3. 17.4. ANALOG OUTPUT WIRING WITH THE MLX90316 IN SOIC PACKAGE.......................................................25 ANALOG OUTPUT WIRING WITH THE MLX90316 IN TSSOP PACKAGE....................................................25 PWM LOW SIDE OUTPUT WIRING ............................................................................................................26 SERIAL PROTOCOL ....................................................................................................................................26
MLX90316
18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 28 19. ESD PRECAUTIONS........................................................................................................................... 28 20. PACKAGE INFORMATION................................................................................................................. 29 20.1. 20.2. 20.3. 20.4. 20.5. 20.6. SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................29 SOIC8 - PINOUT AND MARKING ...............................................................................................................29 SOIC8 - IMC POSITIONNING.....................................................................................................................30 TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................31 TSSOP16 - PINOUT AND MARKING ..........................................................................................................32 TSSOP16 - IMC POSITIONNING................................................................................................................32
21. DISCLAIMER ....................................................................................................................................... 34
3901090316 Rev. 001
Page 4 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
3. Glossary of Terms - Abbreviations - Acronyms
Gauss (G), Tesla (T): Units for the magnetic flux density - 1 mT = 10 G TC: Temperature Coefficient (in ppm/Deg.C.) NC: Not Connected PWM: Pulse Width Modulation %DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF) ADC: Analog-to-Digital Converter DAC: Digital-to-Analog Converter LSB: Least Significant Bit MSB: Most Significant Bit DNL: Differential Non-Linearity INL: Integral Non-Linearity RISC: Reduced Instruction Set Computer ASP: Analog Signal Processing DSP: Digital Signal Processing ATAN: trigonometric function: arctangent (or inverse tangent) IMC: Integrated Magneto-Concentrator (IMC(R)) CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform) EMC: Electro-Magnetic Compatibility
4. Pinout
Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SOIC-8 Analog / PWM Vdd Test 0 Not Used Not Used Out Test 1 Vdig Vss (Ground) Serial Protocol Vdd Test 0 /SS SCLK MOSI / MISO Test 1 Vdig Vss (Ground) Analog / PWM Vdig_1 Vss_1 (Ground_1) Vdd_1 Test0_1 Not Used_2 Not Used_2 Out_2 Test1_2 Vdig_2 Vss_2 (Ground_2) Vdd_2 Test0_2 Not Used_1 Not Used_1 Out_1 Test1_1 TSSOP-16 Serial Protocol Vdig_1 Vss_1 (Ground_1) Vdd_1 Test 01 /SS_2 SCLK_2 MOSI_2 / MISO_2 Test 12 Vdig_2 Vss_2 (Ground_2) Vdd_2 Test 02 /SS_1 SCLK_1 MOSI_1 / MISO_1 Test 11
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see section 16).
3901090316 Rev. 001
Page 5 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
5. Absolute Maximum Ratings
Parameter Supply Voltage, VDD (overvoltage) Reverse Voltage Protection Positive Output Voltage Output Current (IOUT) Reverse Output Voltage Reverse Output Current Operating Ambient Temperature Range, TA Storage Temperature Range, TS Magnetic Flux Density + 20 V - 10 V + 10 V + 14 V (200 s max - TA = + 25C) 30 mA - 0.3 V - 50 mA - 40C ... + 150C - 40C ... + 150C 700 mT Value
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
6. Detailed Description
As described on the block diagram (Figure 1), the magnetic flux density parallel to the IC surface (i.e. B//) is sensed through the TriaisTM sensor front-end. This front-end consists into two orthogonal pairs (for each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (blue area on Figure 3) and an Integrated Magneto-Concentrator (IMC(R) - yellow disk on Figure 3).
Figure 3 - TriaisTM sensor front-end (4 Hall plates + IMC(R) disk) Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal components (respectively BX and BY) proportional to the parallel components (respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and the IC surface. While a magnet (diametrally magnetized) rotates above the IC as described on Figure 2, the sensing stage provides two differential signals in quadrature (sine and cosine - Figures 4 & 5). 3901090316 Rev. 001 Page 6 of 34 Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
400 300 200 BX & BY (G) 100 0 -100 -200 -300 -400 0 90 180 BX 270 360 450 Alpha (Degree) 540 BY 630 720
Figure 4 - Magnetic Flux Density - BX cos() & BY sin()
2000 1500 1000 VX & VY (mV) 500 0 -500 -1000 -1500 -2000 0 90 180 VX 270 360 450 Alpha (Degree) 540 VY 630 720
Figure 5 - TriaisTM sensor front-end - Output signals - VX BX cos() & VY BY sin() Those Hall signals are processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier). The conditioned analog signals are converted through an ADC (configurable - 14 or 15 bits) and provided to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose primary function is the extraction of the angular position from the two raw signals (after so-called front-end compensation steps) through the following operation:
= ATAN
3901090316 Rev. 001
VY VX
Data Sheet 4 October 05
Page 7 of 34
Rotary Position Sensor IC
MLX90316
The DSP functionality is governed by the micro-code (firmware - F/W) of the micro-controller which is stored into the ROM (mask programmable). In addition to the ATAN function, the F/W controls the whole analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also the self-diagnostic modes. In the MLX90316, the ATAN function is computed via a look-up table (i.e. it is not obtained through a CoRDiC algorithm). Due to the fact that the ATAN operation is performed on the ratio VY/VX, the angular information is intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects) affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position sensor based on conventional linear Hall sensors. In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet). Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the target transfer characteristic and it is provided at the output(s) as: * * * an analog output level through a 12 bit DAC followed by a buffer a digital PWM signal with 12 bit depth (programmable frequency 100 Hz ... 1 kHz) a digital Serial Protocol (SP - 14 bits computed angular information available)
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary position sensor output transfer characteristic: Vout() = ClampLo Vout() = Voffset + Gain x Vout() = ClampHi for min for min max for max
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user. The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration depending on the linearity requirement. The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC). The programming steps do not require any dedicated pins. The operation is done using the supply and output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316 daugtherboard and software tools (DLL - User Interface).
3901090316 Rev. 001
Page 8 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
7. MLX90316 Electrical Specification
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K).
Parameter Nominal Supply Voltage Supply Current Output Current Output Short Circuit Current (1)
Symbol Vdd Idd Iout Ishort
Test Conditions Slow mode# &
,
Min 4.5
Typ 5
Max 5.5 10 16
Units V mA mA mA mA mA mA mA k k %Vdd %Vdd %Vdd %Vdd
Fast mode# &
,
Analog Output mode PWM Output mode Vout = 0 V Vout = 5 V Vout = 14 V (TA = 25C)
-8 -20 12 12 22 4 4 96 10 5.6 (2)
8 20 15 30 (4) 3 1 1.5
Output Load Saturation Output Level Diagnostic Output Level
RL Vsat_lo Vsat_hi Diag_lo Diag_hi
Pull-down to Ground Pull-up to 5V (3)
Pull-up load RL > 10 k Pull-down load RL > 10 k Pull-down load RL > 10 k Pull-up load RL > 10 k Pull-down load RL > 10 k Pull-up load RL > 10 k Programmable Programmable 97 98 0 0
Clamped Output Level
Clamp_lo Clamp_hi
100 100
%Vdd (5) %Vdd (5)
(1) For the dual version, the supply current is multiplied by 2 (2) See section 14.1 for details concerning Slow and Fast mode (3) Applicable for output in Analog and PWM (Open-Drain) modes (4) RL < for output in PWM mode (5) Clamping levels are limited by Vsat_lo and Vsat_hi
3901090316 Rev. 001
Page 9 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
8. MLX90316 Isolation Specification
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K). Only valid for the package code GO i.e. dual die version.
Parameter Isolation Resistor
Symbol
Test Conditions Between 2 dies - TSSOP package
Min 4
Typ
Max
Units M
9. MLX90316 Timing Specification
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K). Parameter Main Clock Frequency Sampling Rate Step Response Time Watchdog Start-up Cycle Analog Output Slew Rate PWM Frequency FPWM Ts Wd Tsu Slow and Fast mode #-& Cout = 42 nF 100 200 1000 Symbol Ck Test Conditions Slow mode #-& Fast mode # &
-
Min
Typ 7 20 600 200
Max
Units MHz MHz s s
Slow mode # &
-
Fast mode # &
-
Slow mode # &, Filter=5 # &
.
4 400 600 5 15
ms s ms ms V/ms Hz
Fast mode # &, Filter=0 # &
.
(6) See section 14.1 for details concerning Slow and Fast mode (7) See section 14.4 for details concerning Filter parameter
3901090316 Rev. 001
Page 10 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
10.
MLX90316 Accuracy Specification
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K). All the errors expressed in Deg. Can be converted in %Vdd or %dc by using the following relationship: Err (%Vdd) = Err (Deg) x Output Span (%Vdd) / Angular Span (Deg) + Err_DAC + Err_OutBuf Err (%DC) = Err (Deg) x Output Span (%DC) / Angular Span (Deg) Err (Serial Protocol) = Err (Deg) Parameter ADC Resolution Thermal Offset Drift #1 Thermal Offset Drift #2 Symbol RADC Test Conditions Slow - 15 bits ADC (14 + sign) Fast - 14 bits ADC (13 + sign) Thermal Offset Drift at the DSP input (excl. DAC and output stage) Thermal Offset Drift of the DAC and Output Stage Only for the Analog Output Analog Output Resolution RDAC 12 bits DAC (Theoretical - Noise free) INL DNL Output stage Noise Noise pk-pk (10) RG = 9, Slow mode, Filter=5 RG = 9, Fast mode, Filter=0 Ratiometry Error PWM Output Resolution PWM Jitter(11) RPWM JPWM RSP
12
Min
Typ 0.005 0.01
Max
Units Deg/LSB15 Deg/LSB14
-60 - 0.2
+60 + 0.2
LSB15 (9) %Vdd
0.025 -4 0.05 1 0.05 0.03 0.1 -0.1 0 0.025 0.2 0.022 -2 2 0.06 0.2 0.1 +4 2
%Vdd/LSB LSB LSB % Vdd Deg Deg % %DC/LSB %DC Deg/LSB Deg
12 bits (Theoretical - Jitter free) fPWM = 250 Hz 14 bits - 360 Deg. mapping (Theoretical - Jitter free) 360 Deg
Serial Protocol Output Resolution Intrinsic Linearity Error( )
Le
(9) Thermal Offset Drift #1 yields to max. 0.3 Deg. drift for the computed angular information (output of the DSP). (10) The application diagram used is described in the recommended wiring. For detailed information, refer to section filter in application mode. (11) Jitter is defined by 3 for 1000 acquisitions. (12) The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into account an ideal rotating field. Once associated to a practical magnetic construction and the associated mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved with the 2 point or 3 point end-user calibration that is available on the MLX90316.
3901090316 Rev. 001
Page 11 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
11.
MLX90316 Magnetic Specification
Parameter Symbol B Test Conditions Min 20 Typ 50 Max 70( ) 0
13
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the Temperature suffix (S, E or K). Units mT ppm/C
Magnetic Flux Density
Magnet Temperature Coefficient TCm -2400 (13) Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.
12.
MLX90316 CPU & Memory Specification
0 (CPU provides 5 Mips while running at 20 MHz. 1 Test Conditions Min Typ 10 256 128 Max Units KB B B Parameter Symbol
The DSP is based on a 16 bit RISC / $ !
ROM RAM EEPROM
3901090316 Rev. 001
Page 12 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
13.
MLX90316 End-User Programmable Items
Parameter Comments Define the output stage mode PWM Polarity PWM Frequncy Discontinuity Point Initial Slope AX Coordinate AY Coordinate AS Coordinate BX Coordinate BY Coordinate BS Coordinate CX Coordinate CY Coordinate CS Coordinate Clamping_High Clamping_Low # bit 16 1 16 1 15 16 16 16 16 16 16 16 16 16 16 16 16 8 8 16 16 16 8 16 16 1 8 1 4 4 16 1 8 1 1 1 16
Output stage Mode PWMPOL1 PWM_Freq CLOCKWISE DP LNR_S0 LNR_A_X LNR_A_Y LNR_A_S LNR_B_X LNR_B_Y LNR_B_S LNR_C_X LNR_C_Y LNR_C_S CLAMP_HIGH CLAMP_LOW DEADZONE FHYST MELEXISID1 MELEXISID2 MELEXISID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 HIGHSPEED FILTER AUTO_RG RGThresL RGThresH EEHAMHOLE RESONFAULT DACTHRES FORCERA75 MLXLOCK LOCK CRC
Automatically computed and programmed by the IC
3901090316 Rev. 001
Page 13 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
14.
Description of End-User Programmable Items
14.1. Output_Mode
The MLX90316 output type is defined by the Ouput_Mode parameter. Parameter Output_Mode Value Analog PWM NMOS Serial Unit
14.1.1. Analog Output Mode The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration allowed the use of a pull-up or pull-down resistor. 14.1.2. PWM Output Mode When PWM NMOS is selected, the output signal is a PWM modulation. The output stage is an open drain NMOS transistor, to be used with a pull-up resistor (low side). The PWM polarity is selected by the PWMPOL1 parameter: * * PWMPOL1 = 0 for a low level at 100% PWMPOL1 = 1 for a high level at 100%
The PWM frequency is selected by the PWM_Freq parameter. Parameter PWMPOL1 PWM_Freq 0 1 100 ... 1000 Hz Value Unit
14.1.3. Serial Protocol Output Mode The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. See the dedicated Serial Protocol section for a full description (Section 17).
3901090316 Rev. 001
Page 14 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
14.2. Output Transfert Characteristic
Parameter CLOCKWISE DP LNR_A_X LNR_B_X LNR_C_X LNR_A_Y LNR_B_Y LNR_C_Y LNR_S0 LNR_A_S LNR_B_S LNR_C_S CLAMP_LOW CLAMP_HIGH DEADZONE FHYST Value CCW = 0 CW = 1 0 ... 359.9999 0 ... 359.9999 Deg. Deg. Unit
0 ... 100
%
0 ... 64
%/Deg.
0 ... 100 0 ... 100 0 ... 359.9999 0 ... 255
% % Deg. LSB
14.2.1. CLOCKWISE Parameter The CLOCKWISE parameter defines the magnet rotation direction. * * CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin order direction for the TSSOP16 package. CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin order direction for the TSSOP16 package.
Refer to the drawing in the IMC positioning sections (Section 19.3 and 19.6). 14.2.2. LNR Parameters The LNR parameters, together with the clamping values, fully define the relation (the transfer function) between the digital angle and the output signal. The shape of the 90316 transfer function from the digital angle value to the output voltage is described by the drawing below. Six segments can be programmed but the clamping levels are necessarily flat. Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by almost an order of magnitude each time. Three or five point calibration will be preferred by customers looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for a cheaper calibration set-up and shorter calibration time. 3901090316 Rev. 001 Page 15 of 34 Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
CLAMPHIGH LNR_C_Y
100 %
Clamping High
C
Slope LNR_C_S
B
LNR_B_Y
Slope LNR_B_S
A
LNR_A_Y
Slope LNR_S0
Slope LNR_A_S
CLAMPLOW
Clamping Low
0% 0
LNR_A_X
LNR_B_X
LNR_C_X
360 (Deg.)
14.2.3. CLAMPING Parameters The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum output voltage level. Both parameters have 16 bits of adjustment with a resolution of approximately 0.076 mV. 14.2.4. DEADZONE Parameter The dead zone is defined as the angle window between 0 and 359.9999. When the digital angle lies in this zone, the IC is in fault mode. 14.2.5. FHYST Parameter The FHYST parameter is an hysteresis filter. The output value of the IC is not updated when the digital step is smaller than the programmed FHYST parameter value. The output value is modified when the increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the noise level.
14.3. Identification
Parameter MELEXSID1 MELEXSID2 MELEXSID3 CUSTUMERID1 CUSTUMERID2 CUSTUMERID3 Value 0 ... 65535 0 ... 65535 0 ... 65535 0 ... 255 0 ... 65535 0 ... 65535 Unit
Identification number: 40 bits freely useable by Customer for traceability purpose. 3901090316 Rev. 001 Page 16 of 34 Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
14.4. Sensor Front-End
Parameter HIGHSPEED FILTER AUTO_RG RGThresL RGThresH Value 0 = Slow mode 1 = Fast mode 0...5 0 = disable 1 = enable 0 ... 15 0 ... 15 Unit
14.4.1. HIGHSPEED Parameter The HIGHSPEED parameter defined the main frequency for the DSP. * HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock. * HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock. For a better accuracy, the Slow mode must be enable. 14.4.2. FILTER Parameter The MLX90316 includes a programmable low-pass filter controlled with the Filter parameter. 6 values are possible described in the next table.
Filter Value 0 1 2 3 4 5
Attenuation (dB) na 2.9 3.6 5 6.1 7
Speed Mode Low High Low High Low High Low High Low High
Response time (ms) 2.22 0.75 3 1 3.75 1.25 3.75 1.25 4.5 1.5
14.4.3. AUTO_RG, RGThresL, RGThresH Parameters AUTO_RG parameter enables the automatic gain control to optimize the ADC span. RGThresL defines the minimum RG value while RGThresH defines the maximum RG value. When AUTO_RG is enabled, the optimized value for RGThresL is 0.
3901090316 Rev. 001
Page 17 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
14.5. Diagnostic
Parameter EEHAMHOLE RESONFAULT DACTHRES FORCERA75 0 3131h 0 1 0 ... 255 0 1 Value Unit
14.5.1. EEHAMHOLE Parameter The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory recovery) 14.5.2. RESONFAULT Parameter This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the parameter is to 1. By default, the parameter is set to 0. 14.5.3. DACTHRES Parameter The DACTHRES is the high threshold of the DAC monitor. The DAC monitor senses an output DAC voltage for one fixed code. The table hereafter highlights the effect of the DACTHRES on the output Vs supply voltage. 14.5.4. FORCERA75 Parameter This parameter forces the circle radius adjustment to 75% instead of 90% when the parameter is set to 1. By default, the parameter is set to 0.
14.6. Lock
Parameter MLXLOCK LOCK 0 1 0 1 Value Unit
14.6.1. MLXLOCK Parameter MLXLOCK locks all the parameters set by Melexis. 14.6.2. LOCK Parameter LOCK locks all the parameters set by the user. 3901090316 Rev. 001 Page 18 of 34 Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
15.
MLX90316 Self Diagnostic
The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure modes ("fail-safe"). Action CPU Reset # &
'*
ROM CRC Error at start up (64 words including Intelligent Watch Dog - IWD) ROM CRC Error (Operation Background task) RAM Test Fail (Start up) Calibration Data CRC Error (Start-Up) Hamming Code Recovery Error (Start-Up) Calibration Data CRC Error (Operation - Background) Dead Zone ADC Clipping (ADC Output is 0000h or 7FFFh) Radius Overflow ( > 100% ) or Radius Underflow ( < 50 % ) Fine Gain Clipping (FG < 0d or > 63d) Rough Offset Clipping (RO is < 0d or > 127d) Rough Gain Clipping (RG < RGTHRESLOW or RG > RGTHRESHIGH) DAC Monitor (Digital to Analog converter) ADC Monitor (Analog to Digital converter)
Effect on Outputs Diagnostic low #'+& Immediate Diagnostic low
Remark All the outputs are already in Diagnostic low - (start-up)
Enter Endless Loop: - Progress (watchdog Acknowledge) - Set Outputs in Diagnostic low CPU Reset Hamming Code Recovery CPU Reset CPU Reset Set Outputs in Diagnostic low. Normal Operation until the "dead zone" is left. Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low Normal mode, and CPU Reset If recovery Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset Set Outputs in Diagnostic low. Normal Mode with immediate recovery without CPU Reset
Diagnostic low
Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low
All the outputs are already in Diagnostic low** ** (startup) Start-Up Time is increased by 3 ms if successful recovery
Immediate recovery if the "dead zone" is left
(50 % - 100 %) No magnet / field too high
Immediate Diagnostic low
Immediate Diagnostic low
ADC Inputs are Shorted
MLX90316 Fault Mode continue... 3901090316 Rev. 001 Page 19 of 34 Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
...MLX90316 Fault Mode Fault Mode Undervoltage Mode
Action At Start-Up, wait Until Vdd > 3V. During operation, CPU Reset after 3 ms debouncing
Effect on Outputs - Vdd < POR level => Outputs high impedance - POR level < Vdd < 3 V => Outputs in Diagnostic low. Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Immediate Diagnostic low Pull down resistive load => Diag. Low Pull up resistive load => Diag. High#'+& Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Pull up resistive load => Diag. High Pull down resistive load => Diag. Low Pull up resistive load => Diag. High
Remark
Firmware Flow Error Read/Write Access out of physical memory Write Access to protected area (IO and RAM Words) Unauthorized entry in "SYSTEM" Mode Vdd > 7 V
CPU Reset CPU Reset CPU Reset CPU Reset Set Output High Impedant (Analog)
Intelligent Watchdog (Observer) 100% Hardware detection. 100% Hardware detection. 100% Hardware detection. 100% Hardware detection.
Vdd > 9.4 V
IC is switched off (internal supply) CPU Reset on recovery CPU Reset on recovery
100% Hardware detection.
Broken Vss
Broken Vdd
CPU Reset on recovery
100% Hardware detection. Pull down load < 10 k to meet Diag Lo spec < 2% Vdd 100% Hardware detection. Pull up load to Vpullup> 8 V to meet Diag Hi spec > 96% Vdd
#'*& CPU Reset means: 1. Core Reset (same as Power-On-Reset). It induces a typical start up time. 2. Periphery Reset (same as Power-On-Reset) 3. Fault Flag/Status Lost #'+& Refer to Section 7 for the Diagnostic Output Level specifications
3901090316 Rev. 001
Page 20 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
16.
Serial Protocol
16.1. Introduction
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node. The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO): * * * /SS pin is a 5 V tolerant digital input SCLK pin is a 5 V tolerant digital input MOSI-MISO pin is a 5 V tolerant open drain digital input/output
The basic knowledge of the standard SPI specification is required for the good understanding of the present section.
16.2. SERIAL PROTOCOL Mode
* * CPHA = 1 CPOL = 0 even clock changes are used to sample the data active-Hi clock
The positive going edge shifts a bit to the Slave's output stage and the negative going edge samples the bit at the Master's input stage.
16.3. MOSI (Master Out Slave In)
The Master sends a command to the Slave to get the angle information.
16.4. MISO (Master In Slave Out)
The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 k pull-up is used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of the MLX90316.
16.5. /SS (Slave Select)
The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronisation between Slave and Master in case of communication error.
16.6. Master Start-up
/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized before the first frame transfer.
16.7. Slave Start-up
The slave start-up (after power-up, or an internal failure) takes 16 ms. Within this time /SS and SCLK is ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-impedant) until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while starting up.
3901090316 Rev. 001
Page 21 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
16.8. Timing
To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle of a byte transfer. Note: Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not have seen /SS inactive.
t6 t1 SCLK MOSIMISO /SS
t1
t1
t7 t1
t1
t2
t4
t9
t5
Byte 0
Byte 1
Byte 2
Byte 3
Byte 9
Timings t1 t2 t4 t5 t5 t6 t7 t8 t9 TStartUp
Min(15) 2.3 s / 6.9 s 12.5 s / 37.5 s 2.3 s / 6.9 s 300 s / 1500 s 0s 2.3 s / 6.9 s 15 s / 45 s 0s -
Max -
<1 s < 10 ms / 16 ms
Remarks No capacitive load on MISO. t1 is the minimum clock period for any bits within a byte. t2 the minimum time between any other byte Time between last clock and /SS=high=chip de-selection Minimum /SS = Hi time where it's guaranteed that a frame resynchronizations will be started. Maximum /SS = Hi time where it's guaranteed that NO frame resynchronizations will be started. The time t6 defines the minimum time between /SS = Lo and the first clock edge t7 is the minimum time between the StartByte and the Byte0 the minimum time where SS is deactivated between a ID Byte and a StartByte Maximum time between /SS = Hi and MISO Bus High-Impedance Minimum time between reset-inactive and any master signal change
(15) Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7MHz (Slow Mode).
3901090316 Rev. 001
Page 22 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
16.9. Slave Reset
On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is enable only after the completion of the first synchronization (the Master deactivates /SS for at least t5).
16.10. Frame Layer
16.10.1. Command Device Mechanism Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer. The latch point for the angle measurement is at the last clock of the first data frame byte.
Latch point /SS SCLK MOSI MISO
A A F F F F F F F F D F F A F F T F F A F F F F F F F F F F F F F F F F A A F F F F F F F F D
Timing diagram 16.10.2. Data Frame Structure A data frame consists of 10 bytes:
* * * *
2 start bytes (AAh followed by FFh) 2 data bytes (DATA16 - most significant byte first) 2 inverted data bytes (/DATA16 - most significant byte first) 4 all-Hi bytes
The Master should send AAh followed by 9 bytes FFh. The Slave will answer with two bytes FFh followed by 4 data bytes and 4 bytes FFh. 16.10.3. Timing There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined.
3901090316 Rev. 001
Page 23 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
16.10.4. Data Structure
MLX90316
The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the LSB. DATA16: Angle A[13:0] with (Angle Span)/214 Most Significant Byte MSB A13 A12 A11 A10 A9 A8 A7 DATA16: Error MSB E15 BIT E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E14 Most Significant Byte E13 E12 E11 E10 E9 Less Significant Byte A4 A3 A2 A1 A0 0
LSB A6
MSB A5
LSB 1
LSB E8
MSB E7
Less Significant Byte E6 E5 E4 E3 E2 E1
LSB E0
NAME 0 1 F_ADCMONITOR F_ADCSATURA F_RGTOOLOW F_MAGTOOLOW F_MAGTOOHIGH F_RGTOOHIGH F_FGCLAMP F_ROCLAMP F_MT7V F_DACMONITOR -
ADC Failure ADC Saturation (Electrical failure or field too strong) Analog Gain Below Trimmed Threshold (Likely reason : field too weak) Magnetic Field Too Weak Magnetic Field Too Strong Analog Gain Above Trimmed Threshold (Likely reason : field too strong) Never occurring in serial protocol Analog Chain Rough Offset Compensation : Clipping Device Supply VDD Greater than 7V
Never occurring in serial protocol
16.10.5. Angle Calculation All communication timing is independent (asynchronous) of the angle data processing. The angle is calculated continuously by the Slave:
* *
Slow Mode: every 1.5 ms at most. Fast Mode: every 350 s at most.
The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by the Slave, because any internal failure of the Slave will lead to a soft reset. 16.10.6. Error Handling In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition can be read by the master. The slave will perform a soft reset once the error frame is sent. In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog error...) the Slave's serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error frame are sent).
3901090316 Rev. 001
Page 24 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC 17. Recommended Application Diagrams
MLX90316
17.1. Analog Output Wiring with the MLX90316 in SOIC Package
ECU
5V
Vdd
C1 100nF 1 Vdd Test 1 NotUsed 4 NotUsed Out1
C2 100nF
8 Vss
GND
ADC
C3 100nF
MLX90316
Vdig Test 2 5
GND1 16 1 Vdig1 Vss1 Vdd1 Out1
C2 100nF
Output
R1 10K C4 4.7nF
Recommended wiring for the MLX90316 in SOIC8 package.
17.2. Analog Output Wiring with the MLX90316 in TSSOP Package
ECU
VDD1
Vdd1 GND1
GND1
C1 100nF
C3 100nF
R1 10K
C7 4.7nF
Output1
MLX90316
Vdd2 Out2 Vss2 9 Vdig2 C5 100nF 8
C4 100nF
VDD2
Vdd2 GND2
GND2
ADC
C6 100nF
GND2
Output2
R2 10K
C8 4.7nF
Recommended wiring for the MLX90316 in TSSOP16 package (dual die). 3901090316 Rev. 001 Page 25 of 34 Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
17.3. PWM Low Side Output Wiring
ECU
5V
Vdd
C1 100nF 1 Vdd Test 1 NotUsed 4 NotUsed PWM Vss 8
GND
5V
MLX90316
Vdig Test 2 5
C2 100nF
C3 4.7nF
TIMER
R1 1K
Output PWM
C4 4.7nF
Recommended wiring for a PWM Low Side Output configuration.
17.4. Serial Protocol
3.3V/5V
SPI MASTER
MISO MOSI
1K
90316
OUT1
SPI SLAVE INTERFACE MOSI MISO
CPU
SCLK /SS
Connector if needed
OUT2 OUT3
SCLK /SS
MLX9031 - Single Die - Serial Protocol Mode
3901090316 Rev. 001
Page 26 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
3.3V 5V
SPI MASTER
MISO MOSI LINE Connector
1K
90316 #1
OUT1
SPI SLAVE INTERFACE MOSI MISO
CPU
SCLK1 /SS1 SCLK2 /SS2
SCLK1 /SS1 SCLK2 /SS2
OUT2 OUT3
SCLK /SS
90316 #2
OUT1
SPI SLAVE INTERFACE MOSI MISO
CPU
OUT2 OUT3
SCLK /SS
MLX90316 Dual Die - Serial Protocol Mode (Dual Slave)
3901090316 Rev. 001
Page 27 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
18. Standard information regarding manufacturability of Melexis products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods: Reflow Soldering SMD's (Surface Mount Devices)
* * *
IPC/JEDEC J-STD-020 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2) EIA/JEDEC JESD22-A113 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2) Melexis Working Instruction 341901308
Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)
* * *
EN60749-20 Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat EIA/JEDEC JESD22-B106 and EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309
Iron Soldering THD's (Through Hole Devices)
* *
EN60749-15 Resistance to soldering temperature for through-hole mounted devices Melexis Working Instruction 341901309
Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)
* *
EIA/JEDEC JESD22-B102 and EN60749-21 Solderability Melexis Working Instruction 3304312
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. For more information on the lead free topic please see quality page at our website: http://www.melexis.com/quality.asp
19.
ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901090316 Rev. 001
Page 28 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC 20. Package Information
MLX90316
20.1. SOIC8 - Package Dimensions
1.27 TYP NOTES: All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot.
3.81 5.84 3.99** 6.20**
4.80 4.98*
1.40 1.55 1.55 1.73 0.127 0.250 0.19 0.25 0 8 0.41 0.89
0.35 0.49***
20.2. SOIC8 - Pinout and Marking
Out MOSI/MISO
Vdig
Vss
Test 1
Marking : Part Number MLX90316 (5 digits) Die Version (1 digit) 90316 123456 YY WW Week Date code (2 digits) Year Date code (2 digits) B Lot number (6 digits)
8
5
90316B 123456 YYWW
1
4
3901090316 Rev. 001
Test 0
SCLK
Vdd
/SS
Page 29 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
20.3. SOIC8 - IMC Positionning
CW
8
7
6
5
COS
1.25 1.65 1 2 3 4
CCW
0.46 +/- 0.06
1.96 2.26
SIN
Angle detection MLX90316 SOIC8 0 Deg. 90 Deg.
8
7
6
5
8
7
6
5
N
1
2
3
4
1
2
180 Deg.
8 7 6 5 8
270 Deg.
7 6 5
S
1
2
3
4
1
2
3901090316 Rev. 001
Page 30 of 34
N S
3 4
N3
S
S N
4
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
20.4. TSSOP16 - Package Dimensions
0.65 TYP
12O TYP 0.20 TYP
1.0 DIA
0.09 MIN 4.30 4.50** 6.4 TYP 0.09 MIN
1.0 0.50 0.75 1.0 TYP 4.90 5.10* 0.85 0.95 1.1 MAX 0.09 0.20
0O 8O
1.0
12O TYP
0.19 0.30*** NOTES:
0.05 0.15
All dimensions are in millimeters (anlges in degrees). * Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side). ** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side). *** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot.
3901090316 Rev. 001
Page 31 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
20.5. TSSOP16 - Pinout and Marking
16
1
Vdig_1 Vss_1 Vdd_1 Test0_1 NotUsed_2 NotUsed_2 Out_2/MOSI/MISO_2 Test1_2
Test1_1 Out_1/MOSI/MISO_1 NotUsed_1 NotUsed_1 Test0_2 Vdd_2 Vss_2 Vdig_2
Marking : Part Number MLX90316 (5 digits) Die Version (1 digit) 90316 123456 YY WW Week Date code (2 digits) Year Date code (2 digits) B Lot number (6 digits)
90316B 123456 YYWW
20.6. TSSOP16 - IMC Positionning
16
8
9
CW COS 2
9
Die 1 SIN 2
1.95 2.45 1 1.84 2.04
Die 2 SIN 1 CCW
0.30 +/- 0.06
8
COS 1
2.76 2.96
3901090316 Rev. 001
Page 32 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
Angle detection MLX90316 TSSOP16 0 Deg.
16
180 Deg.
9
90 Deg.
16
270 Deg.
9
S
1 8 1
S
8
180 Deg.
16
N
1 8 1
N
8
3901090316 Rev. 001
S
Die 1
N
Die 1
Die 2
Die 1
Die 2
N
0 Deg.
9
270 Deg.
16
90 Deg.
9
Die 2
Die 1
Die 2
S
Page 33 of 34
Data Sheet 4 October 05
Rotary Position Sensor IC
MLX90316
21.
Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services. (c) 2005 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at www.melexis.com Or for additional information contact Melexis Direct:
Phone: +32 1367 0495 Phone: +1 603 223 2362 E-mail: sales_europe@melexis.com E-mail: sales_usa@melexis.com
Europe, Africa, Asia:
America:
ISO/TS 16949 and ISO14001 Certified
3901090316 Rev. 001
Page 34 of 34
Data Sheet 4 October 05


▲Up To Search▲   

 
Price & Availability of MLX90316

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X